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Abstract 

A method for the derivation of the affine normalizers 
of the space groups using matrix methods is pre- 
sented. Published lists of normalizers have been 
verified, using matrix methods, both by hand and by 
computer. Generating matrices for the affine nor- 
malizers of triclinic and monoclinic space groups are 
listed. 

I. Listings of normalizers in the literature 

Because of the recent interest in normalizers of space 
groups, it is important that accurate lists of these 
normalizers be available in the literature. For the 
definition of normalizers, see any standard text on 
group theory or International Tables for Crystallogra- 
phy .(1987), Vol. A (IT), §§ 8.3.6 or 15.2. 

Normalizers of space groups were used in crystal- 
lography long before crystallographers were aware of 
the formal definition of a normalizer and its proper- 
ties. The earliest list of normalizers of crystallographic 
groups we could find is that in Seitz (1935a) which 
presents, on p. 311, the orthogonal normalizers of the 
holohedries of space lattices. Normalizers of the crys- 
tallographic point groups have been published by 
Galiulin, Nardov, Shustov & Delone (1976) and 
Galiulin (1978). Tables of structure invariants and 
semi-invariants used in the solution of a crystal struc- 
ture by direct methods (Hauptman & Karle, 1953, 
1956, 1959; Karle & Hauptman, 1961) involve nor- 
malizers: in their tables, for each space group, ~ ,  the 
equivalence class of 'permissible origins' that contains 
0,0,0 is generated by the translations that appear as 
'additional generators of ~ ( ® )  and 92~((~)' in Table 
15.3.2 of IT (1987). Similarly, tables appearing in 
Volume IV of International Tables for X-ray Crystal- 
lography (1974) and Giacovazzo (1980) are based on 
these translations. 

To our knowledge, the first listings of normalizers 
of plane groups and three-dimensional space groups 

were published in 1968. For plane groups, Fischer 
(1968, Table 1) listed 'automorphism groups' of those 
13 plane-group types whose normalizers have only 
discrete translations and are isomorphic to plane 
groups. These automorphism groups are isomorphic 
to their corresponding Euclidean normalizers because 
the centralizer of each of these plane groups is trivial. 
In the three-dimensional case, Hirshfeld (1968, Table 
2) listed the 'Cheshire groups' for all 230 space-group 
types. Burzlaff & Zimmermann (1980) have since 
recognized that these are the Euclidean normalizers 
of the space groups. Dzyabchenko (1983) has 
extended Hirshfeld's approach and has listed the 
affine normalizers of the monoclinic and orthorhom- 
bic space groups. 

In 1975, Koch & Fischer derived the automorphism 
group of each space group, with the exception of the 
triclinic and monoclinic ones, by determining the 
group of affine mappings that map the framework of 
symmetry elements of the space group onto itself. A 
list of the affine normalizers, automorphism groups 
and centralizers is given by Burzlaff & Zimmermann 
(1980, Table 3) and by Billiet, Burzlaff & Zimmer- 
mann (1982). These authors also clarified some of 
the confusion that existed in the literature by carefully 
stating the mathematical relationships between the 
normalizer, the centralizer and the automorphism 
group of a space group. Fischer & Koch (1983) have 
since given a comprehensive overview of the history 
of the applications of normalizers of space groups 
and have published tables of the Euclidean nor- 
malizers which are much more detailed than those 
published by Hirshfeld (1968). More recently, 
Dzyabchenko (1983, 1986) has applied affine nor- 
malizers to find optimal packings of molecular 
crystals. 

Remarks on the derivation of normalizers of space 
groups usually invoke diagrams of symmetry elements 
as visual aids by the use of such phrases as 'the 
symmetry of the framework of symmetry elements' 
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or the 'symmetry of the symmetry diagrams' (Haupt- 
man & Karle, 1953, pp. 11, 12; 1956, p. 47; 1959, p. 95; 
Fischer, 1968; Hirshfeld, 1968; Fischer, 1971; Koch 
& Fischer, 1975; Fischer & Koch, 1983). Burzlaff & 
Zimmermann (1980) derived their list of normalizers 
from Koch & Fischer's (1975) list of automorphism 
groups. Parth6 & Gelato (1984) listed Hirschfeld's 
(1968) data in their paper on the standardization of 
inorganic crystal structures. Consequently, it appears 
that in these papers the normalizers were found by 
determining the symmetry of the framework of sym- 
metry elements shown in the space-group diagrams 
displayed in the various editions of International 
Tables ( Internationale Tabellen zur Bestimmung yon 
Kristallstrukturen, 1935; International Tables for X-ray 
Crystallography, 1952; International Tables for Crys- 
tallography, 1983) or similar publications. Since the 
affine normalizers of the triclinic and monoclinic 
space groups cannot be obtained in this way, they 
were not included in the early lists. 

Using Sayari & Billiet's (1977) data, Billiet, Burzlaff 
& Zimmermann (1982) constructed a list of the affine 
normalizers of the triclinic and monoclinic space 
groups. Following Gubler (1982b), a list of the affine 
normalizers of the plane groups can be derived from 
Tables 1 to 3 of Sayari, Billiet & Zarrouk (1978) by 
replacing the condition det ( M ) -  1 with det (M) = 
+1. Gubler (1982b, p. 6) suggested, without giving a 
proof, that the normalizers could be found by inspect- 
ing the framework of symmetry elements. However, 
he was careful to caution that such a strategy 'needs 
the support of an exact mathematical method'. In 
presenting his strategy, Gubler (1982a, b) observed 
that two steps of the procedure 'require some intu- 
ition, and insofar the general problem is not solved'. 
As for several others of those mentioned above, 
Gubler's list of normalizers is not error free. 

Finally, in 1987, IT was supplemented in a second 
edition by the inclusion of § 15 which contains a list 
of the Euclidean and affine normalizers for the plane 
and space groups. In these lists for all plane groups 
g6 (except the oblique ones) and all space groups 
(except the triclinic and monoclinic ones) each nor- 
malizer ~((~) is characterized by its symbol and a 
primitive basis for the lattice part of its translation 
subgroup. Furthermore, additional generators, for 
both the Euclidean 92~((~) and the affine 92~(1~) 
normalizers of(~, as well as the indices of(~ in 92e(~) 
and 92~((~) are listed. The normalizers of the oblique 
plane groups and the triclinic and monoclinic space 
groups are listed by the general entries of their matrix- 
column pairs. No errors in the list of § 15 have been 
found so far. 

In this paper we present an algebraic procedure by 
which the affine normalizers of the space groups can 
be obtained. We applied this procedure to plane and 
three-dimensional space groups. In principle, the pro- 
cedure does not depend on the dimension of space. 

There may be, however, technical difficulties for 
higher dimensions. For four dimensions, listing the 
affine space-group normalizers should not be too 
difficult because lists of the space groups and of the 
corresponding point-group normalizers have been 
provided by Brown, Billow, Neubfiser, Wondratschek 
& Zassenhaus (1978). 

2. The calculation of the normalizers of the space 
groups 

The following discussion assumes that a real n- 
dimensional point space is given together with a coor- 
dinate system consisting of a basis and an origin. For 
a discussion of the definition and properties of n- 
dimensional point spaces, affine spaces and mappings 
see Greub (1975). Each point in point space can be 
represented by an n x 1 column of its coordinates. An 
affine mapping defined on this space maps each point 
X to a point X '  such that 

x'= Ax +a 

where x and x' are the columns representing X and 
X',  respectively, and where A is a real n × n matrix 
and a is a real n x 1 column. In order to emphasize 
that this is a single mapping, the symbol (A, a) is used 
and the equation is written as 

x '=(A,a)x .  

Instead of (A, a), the symbol (A I a) is also used and 
is called the Seitz notation (Seitz, 1935b). It is con- 
venient to use the same symbolism to denote the 
mapping itself. It will be clear from the context 
whether (A, a) denotes the mapping or its representa- 
tion. The representation (A,a) can be uniquely 
decomposed as 

(A, a) = (I, a)(A, o), 

where I is the n x n identity matrix and o is the n x 1 
column consisting entirely of zeros. The pair (I, a) 
represents a translation and the column a is called 
the translation (or column) part of (A, a). The pair 
(A, o) is a linear transformation and hence leaves the 
origin fixed. Thus A is called the linear (or matrix) 
part of (A, a). An affine mapping that preserves dis- 
tances is called an isometry. The group of all 
isometrics, called the Euclidean group ~,  is a sub- 
group of the group ~ of all invertible affine mappings. 
As space groups are groups of isometrics, they are 
subgroups of ~ (see IT, 1987, p. 716). 

Let (~ denote a space group. With respect to a 
primitive basis, each element of ~ can be represented 
by (W, w) where W is a unimodular matrix (see IT, 
1987, p. 715). Thus, the set of all W's comprising the 
linear parts of (~ is a finite unimodular matrix group, 
i.e. a subgroup of GL(n, ~_), the group of all uni- 
modular n x n matrices. This matrix group is a rep- 
resentation of the point group ~(6~) of ~ (see IT, 
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1987, p. 719). The affine normalizer, 92~t(@), of g6 is 
defined as follows: an affine mapping (A, a) is in 
92~(ff)) if and only if for each (W, w) in (~ there exists 
a (W', w') in (~ such that 

(A, a)(W, w)(A, a)-~ = (W', w'). (2.1) 

It follows that g6 is a subgroup of 92~((~). Equation 
(2.1) can be written as 

(AWA -1, a+  Aw-AWA-1a)  = (W', w') 

which can be separated into its matrix part 

AWA-1 = W' 

and its translation part 

(2.2) 

a + A w  - W ' a  = w'.  ( 2 . 3 )  

We simplify the task of finding ~9~(g6) by dividing 
the problem into two parts. Since @ is a subgroup of 
929~((~), there are translations in 92~(ff)). These form 
a normal subgroup of 929a(@) which is not necessarily 
discrete but may be continuous in some subspaces. 
The first part is the determination of this subgroup. 

The second part is to find the remaining elements 
(A, a) of 92~(g6). In the first step we show that A must 
be a unimodular matrix. In the second, we determine 
which unimodular matrices A satisfy (2.2). In the 
third, we find from these matrices A those for which 
there exists a column a such that (2.3) is satisfied. 
The resulting elements (A, a) form a set of representa- 
tives that, with the translations, completely describes 
929a(gfi) much as the general positions given in the 
space-group tables of IT (1987) describe (~. 
Although, in some cases, this list of representatives 
is infinite, it can always be finitely generated. Such 
lists of generators are presented in Tables 1 to 4. 

The translations of 929~((~) 

For a translation of 929a((~), A-- I ,  leaving only a 
to be determined. Hence (2.2) becomes W -- W', which 
does not impose any restrictions on the choice of a. 
Equation (2.3) becomes 

a + w - W a = w '  
o r  

( I - W ) a  = w ' - w .  

Since (W, w) and (W, w') are elements of g6, 

(w, w')(w, w) -~ = (I, w'-w) 

is a translation in (ft. Since the basis is primitive, 
w ' - w  consists of integers. It follows that 

( I - W ) a ~  7/n for all W~ ~((~). (2.4) 

Suppose that W~ and W2 satisfy (2.4). Then there 
exist z~ and z2 in 7/n such that 

W l a = a + z l  and W2a=a+z2 
and so 

W E W l a  = W 2 ( a +  zl)  -- a +  z 2 +  W2zl  • 

Since the entries of W 2 a r e  all integers, z2-3t-W2Zl is 
in 7/". Hence, WEW~ satisfies (2.4) whenever W~ and 
W2 satisfy (2.4). Since ~((~) is finite, W -1 is a positive 
power of W, and so it is sufficient to solve (2.4) for 
a set of generators of ~(ff)). 

The set of all (I, a) satisfying (2.4) can be easily 
found. As only the matrix parts of @ occur in (2.4), 
the result is the same for all space-group types of the 
same arithmetic crystal class, as is well known [for a 
definition of arithmetic crystal classes, cf. IT (1987)]. 

Example: To find the translations of 929a((~) for 
space groups of the arithmetic crystal class 422P, we 
use the two generators 

W1 = 0 and W2= 1 . 

0 0 

Note that the generator (2) of IT (1987) is not 
necessary because it equals W~. We now need to find 
those columns a that satisfy (2.4) for W1 and W2 
simultaneously. For W~, we have (! 0, a, (zl) 

__ 

0 0 / \ a 3 /  O a2 z3 

where zl, z2 and z 3 are integers. Hence a l -  a 2 - 0 ,  
½ (mod 1) and no conditions are placed on a3. For 
W2, we have 

(i 0 0 /al  /2o/ (zl) 
0 o / / o q =  = 
0 2 / \ a 3 /  \2a3/  z3 

where Zl, _7 2 and z3 are integers. Hence the only 
additional condition beyond those imposed above is 
that a3 = 0, ½ (mod 1). Thus the translations of ~ ( ( ~ )  
for this arithmetic class form a C-centered lattice with 
c'--½c; (unconventional setting of a conventional P 
lattice). 

The matrix parts of the normalizer 929a((~) 

We begin the search for the matrix parts of the 
normalizers of the space groups by reducing the prob- 
lem to the realm of point groups. In the same way as 
the point group ~ ( ~ )  is defined, one defines 
~ [ ~ ( 1 ~ ) ]  to be the group consisting of the linear 
parts of the elements of ~ ( ( ~ ) .  We first note that 
the matrices A in ~ ( ( ~ )  are unimodular matrices, 
i.e. elements of GL(n,~_). If W = I ,  then, by (2.2), 
W ' =  I. Therefore, w and w' in (2.3) are columns of 
integers and (2.3) reduces to Aw = w' for each A. Thus 
A ~ GL( n, 7/). 

We now consider the solutions to (2.2). As W and 
W' are elements of ~(g9) and the solutions of (2.2) 
are in GL(n, 2e), the solutions of (2.2) form the nor- 
malizer, 92[~3(g6)] in GL(n, 7/). Using techniques 
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devised by Brown, Neubiiser & Zassenhaus (1973), 
Brown et al. (1978) presented a listing of the gen- 
erators of the solution sets to (2.2) for the dimensions 
n -  2, 3 and 4 in their Tables 5A, B and C, respec- 
tively. For dimensions 2 and 3 we checked the entries 
of these tables by deriving the results by hand in the 
following way. Again it is sufficient to determine A 
for a set of generators of ~((~)  only. 

Example: 929a(mm2C). As generators, we use 

2 =  T and m =  0 

0 0 

1 1 1 1 referred to the primitive basis a v = ~a - ~b, b v = ~a + ~b, 
cv = c with respect to the standard basis a, b, e. We 
write (2.2) in the form 

AW = W'A. 

For W = 2, W' must equal 2 because there is no other 
rotation. Solving A2 = 2A, one obtains 

all a12 0 ) 
A2p = |a21 a22 0 , 

\o 0 a33 

where det ( A z v ) = + l  and the entries are integers. 
Thus, for example, a33 = +1. Since the matrix rep- 
resentation of 2 is the same in the primitive and in 
the standard bases, the form of A2s is the same as 
that of A2p. Thus the set {A2p} of matrices of the form 
of A2p is the normalizer of 112P. 

In mm2C, we distinguish the reflections by m' and 
m, yielding m'm2C. The generator m may be mapped 
either onto itself: Am = mA or onto m': Am = m'A. In 
the first case, the solution is 

/all a12 a13~ 
Amp=~a12 al, a,3j 

\a31 a31 a33/ 

which is the normalizer of 1talC referred to the 
primitive basis. Transformed to the conventional 
basis by Ams = BAmvB -~ with 

B= -½ l g , 

0 0 

one obtains 

(a.oa,  0 0 Ares = all -- a12 • 
\ 2a31 0 a33 / 

Again, since Ares is unimodular,  a ~ -  al2----±1, a l l+  
a12 and a33 must be odd (and 2a3~ is even). This 
agrees with the form described for M4 in Table 15.3.3 
of IT (1987). 

In the case Am = m'A the solution is 

all a12 a~3~ 
Am'p = ~-a ,2  -a,1 -a,3l, 

\ a31 a31 a33/ 

0 a12-all 0 / 
Am, s-- --all--al2 0 -a13 . 

2a31 0 a33 / 

Combining the conditions of A2p with those of Amp 
or Am, p and taking into account that A is unimodular,  
one obtains 

or 

f all a12 00) 
Am'm2Cp=102 all 

0 ±1 

al I a12 ) 
--all l :  °° 0 +1 

(2.5) 

respectively, where either a~l = 0 and a12 = ±1 or a12 = 
0 and a~l = +1. Then (2.5) represents ~ga(mm2C). 
There are 16 such matrices which, when defined in 
terms of an appropriate basis, also represent 
4/mmmP. 

The generators found in Brown et al. (1978), Table 
5B, for 2 /1 /1  (121P), 2 /2 /2  ( l m l C )  and 3 /2 /2  
(mm2C) are of the form of (2.5). Conversely, by more 
extensive calculations, one finds that the generators 
in Table 5B of Brown et al. (1978) yield all of the 
matrices determined by (2.5). Note that the form of 
{Amm2Cs} is the same as that of {Amm2Cp}. 

An inversion, as a generator, will not restrict the 
normalizer because it commutes with any affine map- 
ping. If ~3((~) is a point group consisting only of 
proper rotations and the inversion is added as a 
generator, the normalizer is unchanged. In other 
cases, however, the inclusion of the inversion may 
change the normalizer. For example, in mxmy2z, the 
mappings associated with the normalizer must map 
2z -+ 2z, and either my ~ m x or my -> my. However, in 
the case of 2x/mx 2y/my 2z/m~ there are more combi- 
nations to consider, namely the six permutations of 
{2,,, 2y, 2~}. Which of these permutations can be real- 
ized is partially determined by the arithmetic crystal 
class and thus by the centering of the lattice. For 
example, 92(mmmI)~=92(mm2I) but ~(mmmC)= 
~(mm2C) because, in the latter case, 2~ cannot be 
mapped onto 2,, or 2y due to the C centering. 

If a point group ~({~)h of higher order has a 
subgroup ~({~)t of lower order which is characteristic 
in ~3((~)h, the normalizer of ~(t~)h is a subgroup of 



M. B. BOISEN JR, G. V. GIBBS AND H. WONDRATSCHEK 549 

that of ~ ( ~ ) t .  For example, the cubic point groups 
have characteristic orthorhombic subgroups. There- 
fore, their normalizers can be easily obtained from 
those of the orthorhombic point groups 222P, 222/, 
222F, mmmP, mmmI and mmmF. 

A comparison of our hand calculations with the 
results of Brown et al. (1978) revealed that all entries 
of their Tables 5A and B were found to be correct 
except for the normalizer of 2/1/2 (arithmetic crystal 
class mc) appearing in Table 5A where the correct 
entry is 'REP OF 2/2/2 '  (2mmc) instead of the listed 
entry 'REP OF 2/2/1 '  (2mmp). With this correction, 
we used the solutions of (2.2) given in these tables. 

For a solution A of (2.2) to be a constituent of 
some (A, a) ~ 92~(~), there must exist an a satisfying 
(2.3). Since 92~(g6) is a group, it can be found by 
determining a set of generators. Moreover, (A,a) 
satisfies (2.2) and (2.3) for all elements of g6 if it 
satisfies these equations for a set of generators 
{(W, w)} of ~ .  To show this, suppose that (W~, w~) 
and (W2,wa) satisfy (2.2) and (2.3). Then con- 
sider (Wz, w:) (W~, w~) = (WzW~, w2 + Wzwl). Because 
A(W2W,)A -~ = (AW2A-t) (AWtA - ' )  = W~W'~ we 
have (W2W~)' = W~W~. By substitution of w2 + W2w~, 
W~W~ and w~+W~W'l into (2.3), it is straightforward 
to show that (2.3) is also satisfied by (Wz, w2)(W~, Wl). 

For each space group, we applied (2.3) to a set of 
generating matrices among the solutions of (2.2). For 
symmorphic space groups, A satisfying (2.2) has the 
solution (A, o) of (2.3) because w and w' can always 
be taken to be zero columns. In other cases, some of 
the generators A of (2.2) may not satisfy (2.3) for any 
a and so these generators are not in the solution set. 
When this happens, care must be taken to ensure that 
the full solution set is found. Let 1/denote the group 
generated by the generators that satisfy (2.3). If the 
index of 1I in 92[~3((~)] is a prime number, then 
LI = ~[92~(g6)] because, in this case, Lt must be a 
maximal subgroup of 92[~3(@)]. Otherwise, 1t might 
not be maximal, and we looked for the subgroups of 
92[~((~)] which are supergroups of Lt and checked 
them to find ~[92~(@)]. This was done by looking 
for additional generators to those of Lt not generating 
the full group ~[92~(g6)]. 

Example. To find the normalizers of space groups 
equal to P422, P4122, P4222 or P4322 (Nos. 89, 

91, 93 and 95, respectively), we begin with the transla- 
tions that we found in the example above, and the 
point-group normalizer given by Brown et al. (1978). 
Combining these, we obtain C4/mmm (unconven- 
tional setting) with c '=  ½c referred to the basis of @. 
Note that @ < ~ -< 92~((~) -< C4/mmm, with ~ that 
klassengleiche supergroup of g6 which includes the 
additional translations as determined above. The 
group ~ is called ~ in § 8.3.6 and ~((~) in § 15.2 of 
IT (1987). Obviously, index [C4/mmm: ~] = 2. Con- 
sequently, it is sufficient to consider the generator 1. 

With j = O, ¼, ½, 3, one obtains 

(i ° ° ° °)( i 0 1  fl 1 0 0 1 0  0 
0 i [ y  0 0 l [ j  0 

(i = 0 0 - a +  =4'. 

0 I I  -d 

00!) 
i 01 
0 i l  

The matrix 4' represents an element of @ if and only 
if j  = 0 or ½. Hence the normalizers of P422 and P4222 
contain inversions while those of P4~22 and P4322 
do not. Therefore, 92(P422) = 92(P4222) = C4/mmm 
with c'=½c which is equivalent to P4/mmm. The 
normalizer of P4~22 and P4322 is C4222, referred to 
the basis a ' =  a, b '=  b, c '=  ½e, which is equivalent to 
P4222. 

Example. The normalizer of space group No. 59, 
Proton, must obey the equation Pmmn < ~ = Pmmm 
(a'=½a, b'=½b, c'=½c)<92~(g6)<_ Pm3m(a', b', c'). 
Choosing as additional generators for Pm3m 

(Z ° 1 i) (i ° 1 i) 3 a =  0 0 I and 2d= T 0 I 
1 0 I 0 0 l  

and for Pmmn 

(! o o,!) (! o o,i) 
mx = 1 O[ , my= ] O[ , 

0 I I  0 11 

1 0 0 
mz = 1 0 , 

o i I  

one finds that neither 3d nor 2d fulfil all of the 
e q u a t i o n s  3amk3d 1 = ml and 2 d m k 2 d  I = mt with k = x, 
y or z and l -- x, y or z. However, this does not imply 
that the crystal class of the normalizer is mmm. There 
remain two cases to be checked: 4z/mmm and 
4x/mmm by checking their generators 

(i °i) (i ° ° it 25= 0 0 I and 2}=  0 1 I , 

0 11 1 01 

respectively. Indeed, 2~ does satisfy the appropriate 
equations. Consequently, the normalizer is P4z/mmm 
(a'=½a, b'=½b, c'=½c). 

We have determined 92~(g6) for all of the three- 
dimensional space groups by solving (2.3) for the 
solutions of (2.2) both by computer and by hand. The 
affine normalizers of the plane groups have been 
obtained from the affine normalizers of the space 
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Table 1. Affine normalizers of the plane groups p I and 
p2: matrix parts of the non-translation generators 

The vectors of  the generating translations are listed in Table 15.3.1 of  IT 
(1987, p. 857) under the heading 'Basis vectors'. The column part of  each 
of  the non-translation generators is the zero column. For an oblique net, 
only the first generator represents an isometry; for an accidentally rectangular 
net, the first two generators represent isometrics; for a square net, the first 
three represent isometrics. For the choice of  the generators, see text. The 
first three generators have order 2, the last is of  infinite order. 

groups by inspection. The Euclidean normalizers of 
the plane and space groups are obtained by intersect- 
ing the affine normalizers with the group of all 
isometries, i.e. by sorting out those mappings which 
do not leave the quadratic form of the lattice invariant. 
This is easily done by inspection of the matrix parts 
in connection with the lattice symmetry. Note that an 
orthogonal matrix part does not guarantee the map- 
ping to be an isometry. For example, the matrix 

is orthogonal but is not an isometry of a conventional 
monoclinic lattice. 

Whereas the affine normalizers of all space groups 
of the same space-group type belong to the same 
affine type of groups, the Euclidean normalizers 
depend on the symmetry of the lattice. The Euclidean 
normalizers listed in the literature are those of space 
groups for which the lattices correspond to the space- 
group symmetry (characteristic lattices) and are not 
accidentally ones of higher symmetry. We have 
checked the Euclidean normalizers for plane and 
space groups with characteristic lattices. 

3. The results 

Employing the method described in the previous sec- 
tion, in 1985 we checked existing lists of normalizers 
as well as a draft of Tables 15.3.1 to 15.3.4 of IT 
(1987) which had been sent to us for this purpose. 
In the draft only a typing error had to be corrected. 
Also, later use of these lists has not brought to light 
any errors. 

The entries of the existing lists of the affine nor- 
malizers of plane groups p l  and p2 and of the triclinic 
and monoclinic space groups are in the form of 
matrices with variable entries (IT, 1987, Tables 15.3.3 
and 15.3.4). The other normalizers are given by sets 
of generators. We provide generators for the plane 
groups p 1 and p2 in Tables 1 and 2 and for the triclinic 
and monoclinic space groups in Tables 3 and 4. In 
Tables 1 and 3, the generators with orthogonal matrix 
parts are listed first and are ordered so as to generate 

Table 2. A set of matrix parts of generators of  order 
2 for the ajfine normalizers of  plane groups pl  and p2; 

see text 

Table 3. Affine normalizers of the triclinic and mono- 
clinic (unique axis b) space groups: non-translation 

generators 

Pl ,  P i :  (A, o); (B, o); (Z, o); (C, o); (D, o); (E, o) 
P121, P1211 , Plml, P12/ml, P12Jml: (A, o); (B, o); (Z, o); (D, o); (E, o) 
Plcl, Pl2/cl, P121/c1: (A,o); (B,o); (Z,o);  (E,o); (F,o) 
C121, Clml, C12/ml: (A,o); (B,o); (Z,o);  (G,o); (H,o) 
Clcl, C12/c1: (A,o); (B,o); (Z,o);  (G,g);  (H,o) 

The matrices Z, A, B, C, D, E, F, G and H as well as the columns o and g 
are referred to conventional IT coordinate systems, and are listed below. 
The columns of  the generating translations are listed in Table 15.3.2 of  IT 
(1987, p. 858) under the heading 'Basis vectors'. For a triclinic lattice, only 
(Z, o) represents an isometry. For a monoclinic lattice, only (Z, o) and (B, o) 
represent isometries. For the choice of  the generators, see text. Generators 
Z, A, B, C and D have orders 2, 2, 2, 3 and 2, respectively; generators E to 
H are of infinite order and represent shears. 

Matr ices :  

z= i ; A= i ; 
0 0 

D =  i ; E =  1 ; 

0 0 

B =  1 ; C =  0 ; 

0 1 

F =  1 ; G =  

0 

(i°i) (i) (li4) H =  1 ; o =  ; g=  1 4 

0 

1 ; 

0 

Table 4. Generators of finite order for the affine 
normalizers of the triclinic and monoclinic space groups 

(unique axis b): non-translation generators 

P1, P i :  (X, o); (W, o); (V, o) 
P121, P12tl  , Plml, P12/ml, P121/ml: (X,o); (Y,o); (V,o) 
P l c l ,  P12/cl, P121/cl: (Z,o);  (Y,o); (U,o); (S,o) 
C121, Clml, CI2/ml: (Z,o);  (Y,o); (T,o); (R,o) 
C l c l ,  C12/c1: (Z,o);  (Y,o); (T,g); (R,g) 

The matrices Z, Y, X, W, V, U, T, S and R as well as the columns o and g 
are listed below. The matrices and columns are referred to conventional 
(IT) coordinate systems. 

Matrices: 

(i°i) (i°i) (i°it (!°i) Z =  1 ; Y=  i ; X=  1 ; W =  0 ; 

0 0 0 i 

(!°i) (!°i) (i°i/ (i°!) V= i ; U =  1 ; T =  1 ; S =  1 ; 

0 0 0 0 

(i°!) (i) (! 4) R =  1 ; o =  ; g=  1 4  

0 

The matrices Z, Y, U and T have order 2; X, S and R have order 4; W and 
V have order 6. For the choice of generators, see text. 
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the subgroup of all elements of ~ ( @ )  with 
orthogonal matrix parts by a composition series. The 
matrix parts of the remaining one or two generators 
are 'shear' matrices and hence of infinite order. Fol- 
lowing the proposal of a referee, we include Tables 
2 and 4 which contain shorter lists of generators. 
These generators are all of finite order and are only 
slightly altered from those which the referee kindly 
provided. 

The remarks in the literature on how the nor- 
malizers are found generally involve the notion of 
'symmetry elements', 'framework of symmetry ele- 
ments', 'symmetry pattern' etc. We have been unable 
to find a clear definition in these papers of what is 
meant by these notions nor could we find a compre- 
hensible description of how these concepts can be 
applied in the derivation of normalizers. However, 
there must be a procedure by which the normalizers 
can be obtained by a careful inspection of the space- 
group diagrams of I T  or similar tables since these 
diagrams describe each space group uniquely. 
Indeed, the first complete list of the Euclidean nor- 
malizers of the space groups by Hirshfeld (1968) 
obtained in this manner is free of errors. 

Symmetry elements are frequently used when con- 
sidering the site symmetries of the atomic positions 
in crystal structures or of Wyckott positions. Here, 
they are sets of fixed points together with some infor- 
mation on the operations involved with these fixed 
points. Even this simple concept of symmetry element 
is sufficient to derive the normalizers of many space 
groups. There are space groups, however, where it 
fails. For example, in P l m l  the pattern of symmetry 
elements would consist of a set of parallel and 
equidistant mirror planes. The symmetry of this pat- 
tern contains all rotations about any axis perpen- 
dicular to these planes including the non-crystallo- 
graphic ones. However, the linear part of any element 
in the Euclidean normalizer must be crystallographic 
since it maps the lattice onto itself. Thus, in this 
example, the Euclidean normalizer is a proper sub- 
group of the symmetry group of this symmetry pat- 
tern. Consequently, to determine whether an isometry 
is in the normalizer of a space group, the condition 
that its linear part maps the lattice of the space group 
onto itself, see e.g. Hirshfeld (1968), has to be 
satisfied. Moreover, in some cases of enantiomorphic 
space groups, the handedness of the screw axes is 
essential. 

We suppose that such a procedure for deriving the 
normalizers of space groups may be designed using 
the rigorous definition of 'symmetry element' which 
has recently been published by de Wolff et al. (1989). 
We have not tried to establish this procedure. Instead 
of such a visual approach, we prefer the matrix 
method provided above. It has the advantage of 
(i) not depending on the availability of diagrams, 
(ii) being adaptable to the use of a computer, and 

(iii) being independent of the dimension of space, at 
least in principle. 
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Abstract 

The probability distributions of X-ray intensities in 
fiber diffraction are different from those for single 
crystals (Wilson statistics) because of the cylindrical 
averaging of the diffraction data. Stubbs [Acta Cryst. 
(1989), A45, 254-258] has recently determined the 
intensity distributions on a fiber diffraction pattern 
for a fixed number of overlapping Fourier-Bessel 
terms. Some properties of the amplitude and intensity 
distributions are derived here. It is shown that the 
amplitudes and intensities are approximately nor- 
mally distributed (the distributions being asymptoti- 
cally normal with increasing number of Fourier- 
Bessel terms). Improved approximations using an 
Edgeworth series are derived. Other statistical proper- 
ties and some asymptotic expansions are also derived, 
and normalization of fiber diffraction amplitudes is 
discussed. The accuracies of the normal approxima- 
tions are illustrated for particular fiber structures, and 
possible applications of intensity statistics in fiber 
diffraction are discussed. 

~(~)  

m 

p,,,( ~d), p,.(~) 

am. (/3~.) 
~ ( ~ )  

2 
~m (~L) 
~m. ( ~ . )  

Q,,,( ~), Q,,(#) 

Notation 

amplitude (intensity) on a 
fiber diffraction pattern. 
normalized amplitude. 
number of degrees of free- 
dom for ~3. 
probability density func- 
tions for ~J and #. 
nth moment of ~ (~). 
mean of ~J (#). 
variance of ~J (~). 
nth central moment of 
~(~) .  
cumulative distribution 
functions for ~d and ~. 
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¢P,,,(Y),g/m(Y) 

Kmn 
.A  F A P,.( ~), P,.( ~), P,,(#) 

~ ( ~ ) ,  ", f, (~) P,,(~), 

A A !  A 

Q,,( ~), Qm( ~), Qm(#) 
A 

~m(Y),C',,,(Y) 

characteristic functions for 
~d and #. 
nth cumulant for #. 
normal approximations to 
t'm(~) and pro(#). 
Edgeworth series approxi- 
mations to Pm(~d) and 
P,.(#). 
normal approximations to 
Q,.(~) and Q,.(#). 
normal approximations to 
~o,,,(y) and ~m(Y). 

I. Introduction 

Statistical descriptions of X-ray amplitudes have 
played important roles in many aspects of crystal- 
lography. The most remarkable, of course, is the use 
of conditional distributions of phases in direct 
methods for phase determination (Hauptman & 
Karle, 1953; Giacovazzo, 1980; Bricogne, 1984). 
Other applications include detection of symmetry 
(Wilson, 1949), analysis of twinning (Yeates, 1988), 
and estimation of R factors (Wilson, 1950; Luzatti, 
1952). The initial application of such ideas was a 
study of the distribution of intensities diffracted by 
a crystal (Wilson, 1949). 

X-ray fiber diffraction is a variant of traditional 
crystallography that can be used to determine struc- 
tures of molecules that prefer to form fibers rather 
than single crystals (Millane, 1988). In a fiber speci- 
men, the diffracting particles are randomly rotated so 
that the diffraction pattern is cylindrically averaged. 
Intensity distributions in fiber diffraction are there- 
fore different from those in traditional crystallogra- 
phy. Although intensity statistics have not yet been 
utilized in fiber diffraction, it may be possible to 
develop useful applications. The first step in this 
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